

Worcester Polytechnic Institute

RBE3002 Team 3:
 Final Project Report

Dembski, Clayton John
van Rossum, Floris

Xie, Harry

supervised by:
Professor: Carlo Pinciroli

1

Abstract
Using Python in conjunction with the node system and mapping applications provided

through ROS, the goal was to connect to, and work with the Turtlebot 3 in order to create an
occupancy map of an unknown location, then pathfind back to the known home. Map creation
was accomplished by creating a grid system of occupancy data, identifying and connecting valid
movement positions, and navigating to sets of frontiers with the Navigation Stack. The homing
of the robot was formed via A* methodologies with a series of modified heuristics to further
avoid obstacles.

For those who have access, all of the code created for this project can be found here:
https://github.com/RBE300X-Lab/RBE3002_D18_Team_03

2

Table of Contents
Abstract 1

Table of Contents 2

Introduction 3

Methodology 3
Problem Statement 3
Design Decisions 3

Grids 3
Frontier 4
Pathing 4

Results and Discussion 4
Performance and Problems 4

Conclusion 4

References 4

3

Introduction
This lab had a little lamb

Project Goals
Control and program a Turtlebot3 so that it can explore and navigate a maze, find the lowest
cost path from the start to the goal, generate waypoints and then travel from the start to the goal
autonomously.

Methodology
The following section covers the major steps that were followed in order to complete the
assignment.

1. A significant amount of configuration and software is required in order to allow for the
execution of the project. By following the tutorials listed in References [1] and [2], an
adequate knowledge can be obtained while achieving the proper configuration on your
personal computer. A linux distribution is required in order to correctly run Robot
Operating System. For this project ROS Kinetic was used. This methodology section
assumes all previous lab assignments have been completed correctly.

Connecting to the Turtlebot3
2. The guide posted on canvas was followed. References: [3]
3. A quick summary of the guide. Set the ROS_MASTER_URI variable to the computers IP

address along with 11131 as the port address. In order to find the computer IP address
run the command “ifconfig”. This will print out all the needed network information. The
ROS_HOSTNAME, should be set to the IP address of the computer.
TURTLEBOT3_MODEL should be set to “burger”.

4. Now you can connect to the turtlebot3 with the command “ssh
burger@turtle-NUMBER.dyn.wpi.edu​” where NUMBER corresponds to the number on
the turtlebot.

5. Once connected to the turtlebot, ROS_MASTER_URI should be set to the same as the
variable above.

6. Now RVIZ can be launched on your computer and after, the ros bringup command can
be run on the turtlebot.

mailto:burger@turtle-NUMBER.dyn.wpi.edu

4

Frontiers
7. In order to travel to unexplored regions of the map, frontiers must be found and

navigated to. This is a lengthy process with multiple different steps.
8. With the map generated by the previous code, frontier cells can be identified. A frontier

cell can be identified as a cell that is unoccupied, explored and adjacent to an
unexplored cell. The entire current map has to be looped through in order to create an
array of frontier cells that meet this criteria.

9. Once the frontier cells are obtained and in one array, they must be grouped together in
clusters based on their distance apart. A distance of less than 1 or 2 will do in this case.
That means if two frontier cells have a euclidean distance of more than two it will cause
them to be considered as two seperate frontier clusters. Once all the frontier clusters are
identified they can be grouped into one single array. So, this operation should return an
array of arrays of frontier cells.

10. Frontier clusters centroids have to be found next. In order to navigate to the frontiers
properly, centroids of the frontier clusters have to be found. This can be achieved by
adding up all the x and y locations of each of the individual frontier clusters and then
dividing them by the total of the x and y. This will produce an average location of the x
and y. Next, a waypoint has to be found that corresponds to this location or near to it,
this waypoint should be unoccupied. All these centroids should be added to an array
along with the length of their frontier.

11. These frontier centroids and lengths need to be prioritized next. This means that a
longer, closer frontier centroid is more preferable than a farther, shorter frontier. This can
be done by performing a linear combination of the distance to the centroid plus the
length. Then two constants in front of these variables can tune it to your own application.
This prioritization function should return one frontier waypoint which is the best to travel
to next.

Nav Stack Driving
12. In order to reduce the chance of error and simplify driving, the ROS nav stack library can

be used to drive from one place to another while exploring.
13. A nav stack driving method should be written or used which allows you to send a

waypoint to the nav stack, which will then command the robot to go there.
14. This nav stack driving should be integrated with the frontier code. Once the ROS python

node is started in an unknown environment it should keep running until the entire map is
explored. This means a while loop should be written that keeps running until the map no
longer updates, all frontier waypoints have been reached or are out of reach. This loop
should continually call the frontier prioritization method in order to obtain the most recent
frontier waypoint to travel to. As the robot travels to the next frontier centroid it will
observe new terrain and create new frontier centroids until the whole map is explored.

5

A* Path Planning and Navigating
15. Once the entire map is explored, it must be saved to a .yaml file with the command:

rosrun map_server map_saver -f <your map name>

This will save the map in the package folder. This map can then be loaded into rviz
and the amcl localization can be started with the command:

roslaunch rbe3002_d2018_final_gazebo final_run.launch

map_file:=absolute_path_to_map_yaml_file

Assuming that the rbe3002_d2018_final_gazebo package has been downloaded from
canvas. This is a localizing node that will localize the robot given a pose estimate.

16. Once RVIZ has been launched correctly, a pose estimate should be given with the tool in

RVIZ, this pose estimate should reflect the actual location of the robot within the map.
17. The driving node should also be started now and waiting for a target Pose input by the

user via RVIZ. This driving node, which uses A* and the driving code specified
previously, should come from the previous labs.

18. A target pose can now be sent to RVIZ which will use the currently loaded map to send a
waypoint to the A* node. This node will then return a path.

19. This path needs to be adjusted first before it can be sent to the driving code. In order to
properly avoid walls and remove any unnecessary instructions the path must be
modified. First, each path waypoint should be checked for adjacent occupied waypoints,
if one is found the path waypoint should be adjusted in the opposite direction. This
results in a “safer” path. An optional change that can be made is to adjust the heuristics
of A* to avoid travelling next to walls. For the gCost calculation, add (4 - number of
neighbors). This means that A* will prioritize the nodes that are not next to a wall, thus
creating an even safer path.

20. Aside from making the path safer, the path should be checked for any unnecessary
waypoints. For example, if the robot is already travelling in a certain direction and the
next waypoint features the same orientation and is along the current direction, then that
waypoint is not necessary and can be removed. This can be done by checking the
orientation of each waypoint and removing it if it is the same and along the path of the
current orientation.

21. Once the path modifications are completed the path can be sent to the driving code
which should send the robot along it correctly.

6

Results

Project Goals
Overall, the above defined project goals were completed. The turtlebot3 successfully explored a
previously unexplored map and then navigated around it using our own A* algorithm and driving
code. There were numerous problems and challenges that occurred along the way toward the
project completion that will be discussed and reported here.

Map Acquisition and Exploration
The 4 testing maps, along with the final map that was created for the robot to traverse, with the
specifications of 40 cm minimum corridors, and walls taller than the robot, were eventually
successfully mapped without the robot running into walls or corridors. The mapping was
performed automatically via a Gmapping and Nav Stack launch file provided, however

identifying the positions to map to, to create the full map was left as a user task.
The driving problem was difficult to solve. Although it seemed like a simple challenge many
problems were encountered. The driving code would be given a Pose as a target position and
orientation and navigate to it. If the robot drifted too much, as described above, it would cause
the robot to miss the threshold and sometimes keep driving past the target. Although this was
fixed by driving to a goal in half distance increments, it was a problem. Transforms also resulted
in significant problems. Whenever coordinate transforms had to be done from the world frame to
the robot frame a few lines of could had to be run that were given by the lab instructors.
Therefore, the knowledge on them was limited. Still, a significant number of errors were
encountered when using transforms. The most significant one was an “Extrapolation Exception”
caused by the tfLookup method. This unexplained error was very mysterious but was fixed by
adding rospy.wait() function calls before or after the tfLookup() function. This problem was
encountered numerous times, usually when connecting to the actual turtlebot. The robot itself
moved through a list of poses specified by A*, approaching the same node Zeno’s Paradox style
until within a specified range of the node.

Out of the trials, one in roughly 10 in small spaces would create occupied locations that would
block the robot from continuing through the corridor. Using the heuristic to displace one
gridspace from the wall, a distance threshold of .193 and a speed of .05, and assuming the
robot had properly calibrated its initial position, the robot could successfully pathfound and
navigated around wide open, 90 degree walls without failure. Smaller corridors, and acute walls
inflected inwards towards the robot had a mixed success of ~50% due to drift in the robot and
the robot meeting waypoint thresholds too early.

7

Discussion

Grids
To implement A*, a graph of connected nodes had to be implemented. Instead of interpreting
the map data as a direct grid, we wanted to make the system more robust: Each waypoint
contains a list of waypoints it is connected to. In this way, if we wish to reinterpret the path
information later, and connect waypoints in a larger scale, we may. To create the graph, first we
subscribed to the /map topic, which gave us a 1 dimensional array containing all the points in
the grid. To find a particular row and column info in the grid, the once can use the index

self._currmap.info.width*r+c

And can scroll through the grid as if it were two dimensional. To find the x and y coordinates of
each point in the grid, to deliver to the way point, two transformations must be employed. First,
one must account for the fact that the occupancy grid has an offset from the world origin

Self._currmap.info.origin

Then, using the resolution of each gridspace, they must find the total distance to the current
column for the x and row for the y

c*self._currmap.info.resolution

r*self._currmap.info.resolution

Once each of the waypoints were created, the next step was to connect them with one another.
As the info delivered to us was a grid, if a waypoint was unoccupied, it was connected each
unoccupied waypoint in the 4-connected system. As the array of waypoints was also a 1
dimensional grid, to find out if there is an item in the previous column in a 2d grid, one should
use:

i % self._currmap.info.width -1

In the next column

i % self._currmap.info.width + 1

In the previous row

i - self._currmap.info.width >= 0

8

And in the next row

i + self._currmap.info.width <

self._currmap.info.height*self._currmap.info.width

For the simple_map graph, the result of the connected waypoints is as follows, where the
symbol ‘_’ is the robot position on the map and ‘ is the current goal. Each number indicates how
many waypoints each node has

Figure 1: Waypoint connection visualization

The size that we chose for each item on the occupancy grid is slightly larger than the width of
the greatest side of the turtlebot 3, at .2m. It is important to note, that, in Rviz, we are using the
old turtlebot model, not the hamburger model, and therefore the robot looks larger than it
performs to be. This occupancy grid size is set as a parameter when the object is initialized as
the variable ​_robotSize ​. The occupied grid is calculated by first, finding the size of each grid
the base occupancy map given when loading in the data. Next, it divides the robot size by the
size of each grid to determine an integer value for how large each cell must be to meet the
minimum grid cell size needed to be large enough for the robot. It then checks each occupancy
cell of the base map in each space in the new c space grid, and if any are occupied, the
particular cell is considered occupied. An example is as follows:
A robot has the size of 2 grid cells. The occupancy grid sent by /map is as follows

100 0 0 0

0 0 0 0

0 0 0 0

0 0 100 0

9

100 0

0 100

As the robot is 2 units long and wide, each c space grid is a 2X2 occupancy grid

 1 2

 3 4
As robot gridspace 1, and 4 have occupied cells, as seen by occ(0,0) and occ(2,3) respectively,
1 and 4 are occupied. The grid therefore becomes

 OCC FREE

 FREE OCC
An example of this expansion can be seen below

Figure 2: C Space Expansion Via SuperSampling

Each waypoint also contained the information _occ, a value from 0 to 100 or -1. This occupancy
data was updated at every tick of the /map occupancy grid. If the incoming data has an
occupancy of above 70, all neighbors of the waypoint are disconnected from the given waypoint,
allowing the new barrier to be formed, and stopping the robot from pathing through the location.

Frontier
To navigate to each of the frontiers, a series of calculations were performed: Identifying the
frontier areas, grouping the frontiers, finding the centroids of each group, and mapping to the

10

centroids position. To identify the frontiers, each unoccupied known waypoint was identified. If
any were adjacent to an unknown value, the location would be identified as a frontier and would
be added to a list of frontiers. Once every possible frontier location was identified, they were
grouped by a threshold. If a frontier was within a measured range of another waypoint those two
would be grouped together and the second waypoint would would check for any ungrouped
waypoints in its range, and so on. The centroids of these frontier clusters were then found using
the process described in the lecture. The best frontier was then found based on the frontier
centroid distance from the robot and the length of the frontier cluster.

distanceToFrontier = centerFrontierValue.calculateMDistance(self._robot)

lengthOfFrontier = len(frontier)

Priority = (distanceTune*distanceToFrontier) + (lengthTune*lengthOfFrontier)

This position would then be snapped to the closest known, unoccupied neighbor to insure that
the robot would not try to path to somewhere unreachable. The position would be sent to the
nav stack so that the robot could travel to the location. The program repeatedly pulled the
highest prioritized frontier centroid from the array until there were no more left, meaning the
entire map was explored.

A* and Pathing
Implementing the A* algorithm was a lot of fun. Especially having RVIZ available to visualize the
process was extremely helpful. In our case, we chose to draw the closed set and the frontier of
A*. This provided great insight as to how A* works, and if it didn’t work, why it didn’t. Our A*
algorithm acted as expected, a waypoint destination and start as well as the map was sent to
the A* function and a path was returned. Because of the availability of the lecture notes and lab
documents, writing A* was not significantly difficult. To better understand the functionality of A*,
we were able to change the heuristics and cost algorithms in order to produce different results.
For example, we added more preference to x or y in the heuristic in manhattan distance. This
meant that the path hugged the wall on the x or y side, depending which axis was weighted. We
also managed to create a greedy best first search be weighing the end waypoint euclidean
distance heuristics over the cost of each waypoint. This resulted in pathfinding that was
significantly faster than the A* counterpart, however, paths ended up with much greater twists
and turns. The final heuristic for a was one that forced the robot to avoid walls whenever
possible. We realized, when running amcl on the robot alone, our robot visualization would
slowly diverge from the actual physical position of the robot. This would cause problems
because, in most cases, the most efficient route would take the robot directly adjacent to the
wall. The asyncrity of the robot would thereby cause it to run into said wall. To solve this, two
pieces were implemented. First, the heuristic was modified to give a higher cost based on how
many occupied waypoints were connected to an unoccupied space. In this way, waypoints
adjacent to walls costed more, and were given a wide berth. Second, seen below, if the robot
did have to path next to a wall, and the wall was identified in the 4 connected set, the point
would be moved as far from the edge as possible. This meant that walls in the 8 connected set,
however, would not be identified. Due to this, the path would display in a spline curve around
the wall, smoothing movement.

11

Figure 3: Waypoint Positions Placed on Edge Furthest from Wall

Conclusion
While the robot was able to successfully complete its initial task of mapping, the

inconsistencies of localization and thresholds of driving the robot ultimately lead to a pathing
system that was unreliable and error prone. Given more time and a deeper understanding of
how to read and interpret the data returned by the Lidar, we would expect to create a more
dynamic movement function. This function would react, not by recreating the waypoints that the
robot would move to, but by pushing the robot back away from the wall based on how close it
was. A pid system could be used to push the robot further from the wall and avoid collisions.
While, overall, we are satisfied with how the robot could perform, we were ultimately
disappointed with our final presentation of the robot, as an added accidental mark in the pathing
code caused it to malperform. We did, however, feel we learned a great deal through these
labs. Directly, no one in the team had prior experience with ros, and we felt that we have gained
much confidence in the node topic system used by messages and services. Indirectly, we
gained much experience in graph traversal and .xml, and in setting up larger file and application
structures rather than just working with code structures. We found the project overall less
stressful and more fun than any of the previous robotics courses

References
1. http://wiki.ros.org/ROS/Tutorials​ - ROS Tutorials
2. http://wiki.ros.org/turtlebot/Tutorials​ - ROS Turtlebot Tutorials
3. https://canvas.wpi.edu/courses/6998/files/folder/labs/lab2?preview=1159162​ - Turtlebot

Connection Guide, Canvas

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/turtlebot/Tutorials
https://canvas.wpi.edu/courses/6998/files/folder/labs/lab2?preview=1159162

12

4. https://answers.ros.org/question/188023/tf-lookup-would-require-extrapolation-into-the-p
ast/​ - TF Lookup Extrapolation Exception

https://answers.ros.org/question/188023/tf-lookup-would-require-extrapolation-into-the-past/
https://answers.ros.org/question/188023/tf-lookup-would-require-extrapolation-into-the-past/

